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Abstract— Child-robot interaction offers benefits from social
skill training to physical activity promotion, but many analyses
in this research area require labor-intensive post hoc video
coding. One reason for this need is that modern computer vision
tools are trained with a dearth of child data. In this paper,
we present OverTrack, a semi-automatic tool for overhead-
video-based position tracking during child-robot interaction.
OverTrack can be used for both post hoc video analysis and
real-time position sensing. We evaluated OverTrack’s perfor-
mance on child and robot position tracking by comparing its
post hoc accuracy against popular open-source object detection
algorithms. OverTrack yielded significantly higher accuracy
than the considered alternatives. The products of this work can
benefit child development researchers and roboticists interested
in child-robot interaction.

I. INTRODUCTION

Assistive robotics for early interventions is a growing
area of research that includes our own work for promoting
physical activity through social play with a robot [1], [2].
A common standard in behavior analysis for this type of
intervention, both in our own work (e.g., [1]) and the efforts
of others (e.g., [3]), is manual video coding, a process which
is both time- and resource-intensive. Computer vision offers
one faster processing solution for both post hoc and real-
time analysis. However, current computer vision solutions
are commonly trained on datasets with a paucity of child
data. Based on this current gap, our central research goal
in this paper is fo design and evaluate a computer vision
tool which can track child and robot position during child-
robot interactions. In our research context, we sought to
achieve our goal with an overhead camera. To this end,
we designed and evaluated OverTrack, a semi-automatic
overhead region-of-interest (ROI) tracker for use in post hoc
and real-time analysis of child-robot interaction. We plan to
use the system with our custom assistive robot GoBot, shown
in Fig. 1, which promotes physical activity during free play
with children [1].

The performance of existing tools on our overhead track-
ing task elucidates current challenges in this space. State-
of-the-art object detection algorithms such as YOLO [4],
OpenPose [5], and R-CNN [6] are trained on side-view
camera images and struggle with identifying people in over-
head views [7]. Aerial unmanned vehicles commonly use
overhead views for object detection but require large datasets
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Fig. 1. Left: GoBot, our custom assistive robot for encouraging physical
activity. Right: Overhead view of play space with GoBot and two children.

for reliably identifying new targets of interest [8], [9]. One
openly available tool, RAPiD, was trained on images of
adults for object detection with an overhead fisheye lens [10];
we consider this option as a comparison point in our work.
In child-robot interaction, the availability of training data is
scarce, and varying outfits, mobility aids, and behaviors lead
to challenges in constructing individual user profiles. One
example used the SMIL model to identify spontaneous bouts
of infant motion, but this case was trained on infants who
were not yet mobile [11]. Separate approaches have required
participants to wear a specific color outfit [12] or an AR tag
outfit [13] to support overhead position tracking; however,
these approaches have relied on having the consistent outfits
to enable tracking. As presented in this paper, our tool offers
advantages over competing alternatives, as OverTrack does
not require child training data, multiple camera setups, or
specific child attire to function.

This paper documents the design and early evaluation
of post hoc positional analysis by our OverTrack tool.
OverTrack is publicly available for use on the OverTrack
repository [14]. We describe the tool design in Section II.
In Section III, we describe the methods and results of our
post hoc testing; overall OverTrack showed high accuracy
and performance according to our metrics. We summarize
key conclusions, strengths, and limitations of the work in
Section IV. Our main contribution in this paper is the
collaborative design and early evaluation of OverTrack, a tool
which we believe may benefit early childhood researchers.

II. OVERTRACK TOOL DESIGN

To create a system that would fit our tracking needs, we
first discussed tool design with kinesiology collaborators and
then prepared software to satisfy identified requirements.

A. Design Criteria

In early discussion among the paper authors, who span the
fields of robotics and kinesiology, we sought to determine
requirements of the tracking system, child behaviors that we
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Fig. 2. Flowchart showing OverTrack system operation. The green dashed
region corresponds with post hoc use (the part validated in this paper), while
the blue dashed region corresponds with real-time use. User-inputted items
are denoted with a mouse icon.

would want to detect with our system, and feasible protocols
for use. Child-robot playgroups which are held as part of our
collaborative research efforts, and other playgroups hosted
by the Oregon State University Disability and Mobility Do-
It-Yourself Co-op, typically occur with some incorporated
data collection protocols. The most common data collection
method has been overhead video recording via a GoPro
camera. Some efforts also include side-view video recordings
and/or wearable inertial sensor data collection. Side-view
camera recordings can offer advantages for skeleton tracking
applications, but due to the number of toys and other children
in the play area, occlusion can be a serious obstacle from this
view. Likewise, wearable inertial sensors are convenient for
certain types of activity tracking, but they are difficult to use
for general position estimation. Thus, we chose to work with
overhead camera views to design our general tracking tool.

The identified behaviors that our collaborators from the
Disability and Mobility Do-It-Yourself Co-op usually hand-
code in post hoc video annotation are as follows:

o Child position and orientation

o Child movement level and speed

« Social play occurrence, evaluated by inter-child spacing

o Directed social interaction, evaluated by inter-child

spacing

o Posture and activity level
Most of these categories can be quantified exclusively by
tracking position; thus, we focused on position tracking while
crafting our overhead camera tracking tool.

Finally, we worked with our collaborators to determine
appropriate protocols for system use during an intervention.
In robotics research, autonomous function is often the desired
operating state of sensing systems; however, it has been
far more common for human-in-the-loop tools to be used
in past work by our collaborators (i.e., the Disability and
Mobility Do-It-Yourself Co-op) and others working in related
kinesiology spaces. This fact gave us flexibility in our

design in which we could seek an autonomous system, but
if necessary, dedicate a human operator’s effort to lightly
monitoring and supplying any needed input to the tracker.

B. Resulting Tracker Tool

Based on the need to track position from overhead camera
data, OverTrack is an OpenCV-Python [15] implementation
of a semi-automatic multi-object ROI tracker. Figure 2 shows
a flowchart of system operation, including user-inputted and
automated steps. The system can be used for both post hoc
and real-time video analysis. OverTrack can employ any of
the following openly available OpenCV multi-object track-
ers: CSRT [16], KCF [17], MedianFlow [18], MOSSE [19],
Boosting [20], and MIL [21]. Related work evaluated each
of the above trackers and found that CSRT and KCF were
the best in terms of precision, MedianFlow and MOSSE
had the highest frames per second (FPS), and Boosting and
MIL had the highest success rate [22]. Based on common
needs in robotics research, we added support for both real-
time tracking with communication through Robot Operating
System (ROS) and tracking of ArUco tags that may be on a
robot or other objects in the environment. OverTrack requires
intermittent input from a human operator, which is a common
constraint of the tool operation modes from our collaborators.

The system operator performs four main steps. First, the
user is prompted to draw a bounding box surrounding the
play space so that only regions-of-interest (ROI) (i.e., the
robot and children) within the play space are tracked. The
boundary is displayed to the user as a black rectangle, as
shown in Fig. 3. Next, the user sets the scale which will
serve as a known reference distance for calculating Euclidean
distance between bounding boxes. In our videos, we set the
scale based on checkered 2ftx2ft (0.61mx0.61m) colored
mats in the play space. The user is then able to use specific
keys to select and draw a bounding box for each object of in-
terest (e.g., robots, children, toys) in the play space, as further
explained in the software package documentation [14]. As
shown in Fig. 2, for each frame, the positions and velocities
of the drawn bounding boxes are tracked and saved in a
Pandas [23] DataFrame. This information is subsequently
exported to a csv file or transmitted in real time via ROS.
If the child or robot leaves the overhead camera view and
later returns (or if the tracker loses track of any ROI), the
corresponding bounding box must be redrawn.

Figure 3 shows the system in use with the boundary en-
gaged, the scale set, and bounding boxes selected for GoBot
and a child participant from our past study data. Instructions
for downloading and using OverTrack are available on the
OverTrack repository [14].

III. POST HOC PERFORMANCE EVALUATION

To assess OverTrack’s performance in a post hoc data
analysis context, we compared its performance with common
computer vision tools on video recordings from a past study.

A. Video Dataset and Ground Truths

Our evaluation dataset came from a recent study with
n = 4 participants, wherein our assistive robot encouraged



Fig. 3. A frame from OverTrack use during post hoc data extraction. The
thick black rectangle surrounding the play space denotes the play space
boundary, the orange bounding box marks the robot, and the green bounding
box marks the participant. The text in the top left corner indicates that the
boundary is set and shows the scale in use for distance measurements.

physical activity during seven weekly play sessions. All
study procedures were approved by Oregon State Univer-
sity under protocol #IRB-2020-0723. During each weekly
session, we recorded 10 minutes of overhead child-robot
interaction video using a GoPro HERO10 running at 30 FPS.
An example frame from the overhead view appears in Fig. 3.
Due to a technical error during the study trials, one video
was not successfully recorded, but the other 27 videos were
included in the analysis.

Ground-truth positional data was collected by a trained
coder who marked the bounding box for the assistive robot
and any present children on a randomly selected 3,126
frames across all videos, which represents 1.3% of the overall
captured video frames. A second trained coder likewise
marked bounding boxes on 10% of the 3,126 frames. Using
metrics further described below, we found an average root-
mean-square error (RMSE) of 0.3ft (0.09m) between the
centroids of bounding boxes marked by the coders and
an inter-rater reliability of 91% for identifying the correct
number of ROIs. Agreement of 85% or higher is considered
acceptable in observational studies of children [24].

B. Tool Evaluation Methods

For the OverTrack evaluation, we needed tracking results
from our proposed tool, points of comparison from other
common computer vision resources, and metrics for the
eventual comparison. During the post hoc evaluation process,
we tested and confirmed the compatibility of OverTrack with
Windows 10, Mac OS Maverick, and Linux PCs running
Ubuntu 16.04 through Ubuntu 20.04.

1) OverTrack Settings for the Evaluation: For the evalu-
ation, we extracted post hoc ROI position data from all 27
available study videos using OverTrack with the MedianFlow
tracker [18]. We used the MedianFlow tracker due to its high
FPS with relatively high success rate, as demonstrated in past
related work [22].

2) Computer Vision Benchmarks: We compared the per-
formance of OverTrack against multiple relevant and openly
available algorithms, including YOLOV7 [25], OpenPose [5],
and RAPiID [10]. We conducted an initial analysis of Open-

Pose and YOLOvV7 on two of the study videos, but they both
yielded close to 0% accuracy in detecting the children and
robots from the available overhead camera view, so we did
not perform data extraction or analysis for the rest of the
videos. For every video, we ran both OverTrack and RAPiD
using a Linux PC running Ubuntu 20.04 with an NVIDIA
GTX 1080 Ti GPU, recording the centroids of the robot and
child participants, frame rate, and the total number of ROIs
detected per frame. We used the author-recommended confi-
dence threshold of 0.3 for object detection with RAPiD [10].
For clarity, we note that both OverTrack and RaPiD were
used directly, without any transfer learning step involving
our own video datasets.

3) Performance Metrics: Based on the raw information
collected from the trackers (i.e., centroids of ROIs, frame
rate, and number of ROIs), we identified metrics (i.e., posi-
tional accuracy, runtime, and success rate) for comparisons
grounded in related computer vision literature.

We aimed to understand the positional accuracy of both
RAPiD and OverTrack by computing the positional distance
RMSE between the ground-truth bounding box centroids and
the tool-outputted (i.e., RAPiD and OverTrack) bounding
box centroids across the study video data. Because we could
not be sure which bounding box from RAPiD was meant to
represent the child or robot, we chose the closest RAPiD-
outputted bounding box to each ground-truth bounding box,
and excluded frames in which RAPiD did not identify any
ROIs. We calculated the mean RMSE across each partic-
ipant’s video dataset and the total mean RMSE across all
frames. Based on the recommendation of our kinesiology
collaborators and a threshold we calculated based on related
computer vision work [26], we determined that a mean
RMSE below 0.5ft would signal success for using OverTrack
as a post hoc analysis tool.

For runtime comparison, we computed the average FPS
rate for each tracker. This metric provided an idea of how
quickly each tool could potentially run in post hoc analysis.

To better understand the success rates of the trackers, we
compared the number of objects identified by each tool in
ground-truth frames. A correct (true positive) identification
was defined as when the number of objects identified by
the tracker matched the ground-truth count. A false positive
was defined as when more objects were identified by the
tracker compared to the ground truth. A false negative was
marked if fewer objects than the correct count for robots and
children were marked. Using the aggregated true positive,
false positive, and false negative counts, we calculated the
average accuracy, precision, recall, and F1 score of object
count across all videos [27].

C. Tool Evaluation Results

Our analysis showed low success for RAPiD and high suc-
cess for OverTrack, according to our metrics. Performance
results of RAPID and OverTrack appear in Table I and Ta-
ble II. Across all participants and all frames, OverTrack had a
lower RMSE and therefore a higher positional accuracy. The
OverTrack RMSE value of roughly 0.5ft indicates success.
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Fig. 4. Representative frames from OverTrack (left) and RAPID (right) with bounding box renderings from post hoc position-tracking comparisons. In

this case, RAPID incorrectly identified portions of the play floor as ROIs.

TABLE 1
RAPID AND OVERTRACK POSITIONAL ACCURACY (IN FEET), IN THE
FORM Mean+SD.

Pl P2 P3 P4 Mean

RMSE RMSE RMSE RMSE RMSE
RAPiD 25429 27+£3.1 26432 26428 2.6£3.0
OverTrack | 0.5 £0.3 0.5£0.2 0.5£0.2 0.4£03 0.5 £0.3

TABLE II
RESULTS FOR THE RAPID AND OVERTRACK RUNTIME, ROI COUNT
ACCURACY, PRECISION, RECALL, AND F1 SCORE.

nt F1
FPS Accuracy Precision Recall Score
RAPID 9.5 28% 0.34 0.59 043
OverTrack | 38.8 92% 0.97 094  0.96

RAPID ran at an average of 9.5 FPS while OverTrack ran at
an average of 38.8 FPS during data collection. For accuracy,
precision, recall, and F1 score, RAPiD yielded below 0.6
while OverTrack achieved higher than 0.9. Across the 3,126
ground-truth frames, we found 1,607 false positives and 573
false negatives for RAPiD compared to 80 false positives and
171 false negatives for OverTrack.

Qualitatively, it is also helpful to note the types of errors
that tended to occur with each tracker. We saw two main
types of errors with RAPiD. Uninhabited areas of the play
space were often misidentified as ROIs by RAPiD, as shown
in Fig. 4. Additionally, RAPiD occasionally generated a
bounding box that was much larger than the actual ROI. We
observed that OverTrack failures arose in some cases when
children moved quickly across the play space. The tracker
would lose the child, and the delay until the human operator
could redraw the bounding box would lead to a decline in
accuracy. False positives and false negatives in OverTrack
object count occurred in some scenarios when the trained
coders took different approaches to annotating in cases of
occlusion.

IV. DISCUSSION

Our OverTrack efforts have been a collaboration between
roboticists and kinesiologists to craft a tool for faster post
hoc data extraction and potential real-time overhead position

tracking during child-robot interaction sessions. Due to a
lack of sufficient datasets for training trackers with children,
current open-source fully automated solutions were not yet
viable for use in our child-robot interaction application. We
tested three fully automated and openly available tools that
were not as accurate at tracking ROIs when compared with
OverTrack. Even with no custom retraining, OverTrack was
effective at tracking the positions of GoBot and children
in our dataset. This result can be valuable for researchers
working with similar datasets, as OverTrack is openly avail-
able [14] and can effectively capture video-based metrics for
interaction and engagement during child-robot interaction.
The most typical errors to expect with OverTrack include
losing track of an ROI that is partially occluded or that moves
quickly.

Key strengths of this work include the low RMSE and high
precision, recall, and F1 score for OverTrack when compared
with openly available automated tools. The most current
implementation of OverTrack, accessible via the repository,
works in real time as part of a robot’s sensing suite.

Limitations of this work include that OverTrack requires a
human in the loop to operate; however, the considered fully
autonomous options do not yet yield sufficient performance
levels in the child-robot interaction context. Although our
work uses bounding boxes to represent child location, other
approaches such as skeleton tracking may give different
centroid results. There is also room for more representation
(e.g., different flooring types) within our test dataset.

In conclusion, we designed and tested OverTrack, a pub-
licly available semi-autonomous tool for overhead video
tracking. OverTrack provides high accuracy with reason-
able frame rates in post hoc analysis and can be used
on most computers with minimal setup. Our future work
with OverTrack will focus on integrating OverTrack with
GoBot’s current sensing capabilities and conducting further
studies to validate OverTrack’s real-time performance levels.
Researchers working in child-robot interaction and child
development can benefit from this work.
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